Immunomodulation by mesenchymal stem cells in treating human autoimmune disease-associated lung fibrosis. BACKGROUND: Interstitial pneumonia in connective tissue diseases (CTD-IP) featuring inflammation and fibrosis is a leading cause of death in CTD-IP patients. The related autoimmune lung injury and disturbed self-healing process make conventional anti-inflammatory drugs ineffective. Equipped with unique immunoregulatory and regenerative properties, mesenchymal stem cells (MSCs) may represent a promising therapeutic agent in CTD-IP. In this study, we aim to define the immunopathology involved in pulmonary exacerbation during autoimmunity and to determine the potential of MSCs in correcting these disorders. METHODS: Lung and blood specimens, bronchoalveolar lavage fluid cells collected from CTD-IP patients, and human primary lung fibroblasts (HLFs) from patients pathologically diagnosed with usual interstitial pneumonia (UIP) and healthy controls were analyzed by histology, flow cytometry and molecular biology. T cell subsets involved in the process of CTD-IP were defined, while the regulatory functions of MSCs isolated from the bone marrow of normal individuals (HBMSCs) on cytotoxic T cells and CTD-UIP HLFs were investigated in vitro. RESULTS: Higher frequencies of cytotoxic T cells were observed in the lung and peripheral blood of CTD-IP patients, accompanied with a reduced regulatory T cell (Treg) level. CTD-UIP HLFs secreted proinflammatory cytokines in combination with upregulation of α-smooth muscle actin (α-SMA). The addition of HBMSCs in vitro increased Tregs concomitant with reduced cytotoxic T cells in an experimental cell model with dominant cytotoxic T cells, and promoted Tregs expansion in T cell subsets from patients with idiopathic pulmonary fibrosis (IPF). HBMSCs also significantly decreased proinflammatory chemokine/cytokine expression, and blocked α-SMA activation in CTD-UIP HLFs through a TGF-β1-mediated mechanism, which modulates excessive IL-6/STAT3 signaling leading to IP-10 expression. MSCs secreting a higher level of TGF-β1 appear to have an optimal anti-fibrotic efficacy in BLM-induced pulmonary fibrosis in mice. CONCLUSIONS: Impairment of TGF-β signal transduction relevant to a persistent IL-6/STAT3 transcriptional activation contributes to reduction of Treg differentiation in CTD-IP and to myofibroblast differentiation in CTD-UIP HLFs. HBMSCs can sensitize TGF-β1 downstream signal transduction that regulates IL-6/STAT3 activation, thereby stimulating Treg expansion and facilitating anti-fibrotic IP-10 production. This may in turn block progression of lung fibrosis in autoimmunity.